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Guided Waves on a Planar Helix

SHEEL ADITYA, STUDENT MEMBER, IEEE, AND RAJENDRA K. ARORA, SENIOR MEMBER, IEEE

Abstract—Considered here is a planar structure comprising a pair of
parallel arrays of periodically spaced conducting strips which conduct in
different directions in the two arrays. The guiding properties of this planar
structure are found to be similar, in one case, to those of circular tape
helices. While in general, different dielectric media are assumed in the
sandwiched and outer regions, the special cases studied are 1) the case in
which air constitutes both the media, 2) the normal-helix case in which the
inner medium is a solid dielectric and the outer medium is air, and 3) the
“inverted-helix” case with the two media interchanged.

I. INTRODUCTION

HE conducting helix of circular cross section has
certain unique properties, such as large bandwidth
and low dispersion, which have led to its widespread use
(see, for example, [1]). A somewhat related slow-wave
structure in planar geometry was considered in [2] and [3].
It consisted of a pair of parallel unidirectionally conduct-
ing screens, each conducting in a different direction. In
[3], the structure was confined in the transverse direction
by metal planes; this made exact analysis difficult and
recourse had to be taken to a variational approach. While
the excitation characteristics of the infinitely wide struc-
ture were studied in [4], the dispersion curves for a gener-
alization of this structure were reported in [5]. In the
following this structure is referred to as a “planar helix”.
As in the case of initial studies on the circular helix, so
far the planar helix has been studied in the sheath-helix
approximation. Although this approximation revealed the
potential of the planar helix as a planar slow-wave struc-
ture, the details of the dispersion curves were obscured
because of the limitations resulting from the omission of
the periodic character of the structure as well as the finite
conductor width. Since these aspects can have an im-
portant bearing on the behavior of the structure, it is
desirable that the effect of these be incorporated in the
analysis. To this end, an approach similar to the “tape-
helix” model [6], [7] is used here; space harmonics, the
forbidden region, as well as other details, appear quite
naturally as a consequence of this model, It may be noted
that a related coaxial structure consisting of crosswound
helical wires surrounding a central conductor has been
studied by Wait [8].
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II. CONFIGURATION

The structure considered here for analysis consists of a
pair of arrays of parallel, straight, and perfectly conduct-
ing strips. The strips are assumed to be infinitesimal in
thickness. Along the x direction, the arrays are separated
by a distance 2 (Fig. 1). For simplicity, the structure is
taken to be infinitely wide in the y direction. However, it
seems reasonable to expect that the results obtained here
will be applicable to a structure many wavelengths wide.
Strips in the top array are oriented at an angle a, while
those in the bottom array are oriented at an angle —a,
with respect to the y axis. The directions parallel to the
strips in the top and bottom arrays are called y* and y”,
respectively. With the choice of the axes as shown, the
center lines of the strips intersect the axes at y =mp, and
z= np,, where m and n are integers, and p, and p, are the
periodic spacings between the strips measured along y and
z directions, respectively; p, and p, are related as p, /p,=
tan «. Similarly, the stripwidth w is related to w, and w, as
w,=w/sin « and w,=w/cos a. In general, the permittivi-
ties of medium 1 and 2 are considered to be different.

III. SYMMETRY PROPERTIES

The planar helix remains unchanged under any one or
any combination of the following transformations:

(x,y,z)-—-)(—x, ‘y,z) (la)
(x,y,z)——)(x,y iPy/2’Z+Pz/2)' (lb)

The transformation (1a) rotates the structure about the z
axis by 180°. When this is considered together with
Maxwell’s equations, one finds that the solution of the
problem must be either even or odd if x and y are taken
in conjunction [9]. Thus the structure admits of two inde-
pendent solutions: transverse symmetric and transverse
antisymmetric. For the two solutions, the fields have :

E
I{z(x’)”z)=i I{};(_x, 7)”Z)
E E

pd P4

(X,y,z)= * (_xs —y,Z)

H H

¥y Y
E
sz(x,y,2)= + sz(—x, —y,2). (2)

In (2) upper signs apply to the transverse-symmetric solu-
tion.
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Fig. 1. Cross section of the planar helix; z is the direction of propaga-

tion.

The invariant transformation (1b) is shared in common
with crosswound twin helices described by Chodorow and
Chu [7]. Therefore, the forms of the exponent used in the
field expressions there should be applicable here also.
Moreover, the symmetry implied by (1a) ensures that only
one half of the structure need be considered for a solu-
tion. Finally, the field expressions constituting the solu-
tion should reflect the periodicity of the structure—in
both y and z directions.

1V. FieLD ExPRESSIONS, BOUNDARY CONDITIONS

In the following, the time-dependence factor exp(jwi) is
assumed to multiply all the field quantities. The direction
of propagation is taken to be +z. From (1) and (2), field
expressions appropriate for region 2 for the transverse-
symmetric case are

e o0
EZ,II = 2 2 {Cmn sinh (kmnx) cos ( 2y )
m=—0o0 n= 00 Yy
+ C,,, cosh (k,,,x) sin ( 2y ) e ~Bun? (3a)
Py
o0 o0 . 2
Hy= > X [Dmn sinh (k,,,x) cos ( Liid )
m=—00 n=—o0 py

. [2 ;

+ D, cosh (k,,,x) sin ( Ty )}e‘”’ﬂ"mz. (3b)

Py

Similarly for region 1, considering that the fields decay
away from the structure:
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In (3), a,,,, restricted to be positive and real, are given by

a2,=Q2mn/p,) +(Bn) — ki (4a)
k2, =(27n/p,)*+ (B~ K (4b)
Bon=Boo+ (27 /p.)(2m+n) (4c)
kl2 = ‘*’Zﬂoeofrv kIZI = ‘*’2.“05092- (4d)

In the transverse-antisymmetric case, cosh replaces sinh
and vice versa.

The x and y components of the electric and magnetic
fields in the two regions are obtained by using Maxwell’s
equations. The coefficients 4,,,,4,,,." -+, ¢tc., involved in
the expressions for these components are related by the
following boundary conditions: the tangential compo-

nents of the electric field are continuous at x=a, and

H,—H,;=J, (52)
H,y—H,= ‘Iy (5b)

where J, and J, are the components of the surface current
density on the surface x =a. Further, assuming that the
strips are narrow compared to the period, the separation
of the arrays and the wavelength, from physical consider-
ations, it can be assumed that the current flows essentially

longitudinally along the strips, i.e.,

J=J, (6a)
so that
J,=J,sina and J,=J, cosa. (6b)
Analogous to (3), J,, is expressed in the form
Jy’ = 2 :L Jmn Cos ( Lny_ )
m=—o00 n=—00 Py
, .| 2wy Bz :
+J!, sin e MPm? - (7)
Py

By applying the boundary conditions mentioned earlier,
one evaluates the coefficients 4,,,,4,.,,- -+, etc., in terms
of J,, and J, .

V. CHARACTERISTIC EQUATION

To arrive at the dispersion relation for the structure, the
variational technique introduced in [7] is found suitable
here also. Let I represent the complex power which might
be generated or absorbed by the top array. Then

/2 (/2 :
1= ["7 [*7 [ E(H}~ Hy)+ E,(Hy~ HE) | dydz.

_Pz/2 _Py/z
(8a)

The field components above are evaluated at x=a. From

E;= 2 2 4w cos(zwny)+A,’m, sjm(z—wnl) e~ om(x = Do =B (3c)
m=—00 n= —00 py py
Hy= 2 2 |Bu Cos( Wny)+B,;m sm( wny) e~ ¥~ @) g =Bt (3d)
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(5) and (6)
z 2 4 .
f”/ f”/ [E, sin a+E, cos a)J%|dvdz (8b)
—p:/2Y=p,/2
in which J,, is obtained from (7). Now, to obtain the

dispersion relation one sets
SI(Jx,: T, x)=0. €

For an approximate solut1on, one may assume J, to
consist of a finite number of terms. For similar problems
meaningful results have been obtained by single-term
approximations [6], [7]. Accordingly, the results reported
here are based on the following single-term approxima-
tion:

=J exp(—JjBoo )./ P, P,/ P, —W./2<2<yp./p, +W./2
(10)
In this “zeroth-order” approximation the characteristic
equation reduces to a singly infinite series with m =0. For
instance, for the case when €, =¢,, =1, the characteristic
equation is

2]

=0 elsewhere.

Wioko, COS «
k?

c

(B +jB0n)

n= —o0

. ( Bon27n /p, cos

P +sin a)(AO,,—jA{)n)J=O. (11)

VL

Before passing on to results obtained by numerical
solutions of the characteristic equation, it should be of
interest to consider the forbidden region for the planar
helix. Since only those solutions are sought for which the
fields decay away from the arrays, it is implied that none
of the «,,, can be imaginary or negative for an acceptable
solution. This restriction results in a forbidden region the
boundary of which, for the present single-term approxi-
mation, is determined as follows:

FoRBIDDEN REGION

(Boa)’+(2mn/p,)’ — ki >0 . (122)
which, together with (4c), yields
BOOPz/ZW > —nx [(kopz/z‘”)zerl _(n tan a)z] 1/2‘
(12b)

Figs. 2 and 3 include the plots of forbidden regions for
¢, =1 and 2.56, respectively, and « is taken as 10°. Evi-
dently, the forbidden region changes with . The troughs
in the boundary are given by

[kop./27,Boop./27] = [n tan a/(e,l)l/z,n] . (12¢)
Solutions for slow-wave propagation must fall below the
boundary of the forbidden region.

VII.

For the numerical solution of the characteristic equa-
tion, values assumed for various parameters are a=10°,
w,/p,=0.1 and p, /2ma = 1. The infinite series in the char-

NUMERICAL RESULTS
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Fig. 2. Forbidden region for ;=1 and a=10°. Also shown are the
dispersion characteristics for the air case: €,; = ¢, =1. Different space
harmonics are marked by different values of n.
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Fig. 3. Forbidden region for ¢,=2.56 and a=10°. Also, dispersion
characteristics for the inverted-helix case: ¢,,=2.56, ¢,=1, a=10°.
Dashed curves represent the transverse-antisymmetric solution where
it is different from the symmetric one.

acteristic equations is found to converge sufficiently fast
to truncate the series after five terms.

Fig. 2 presents the results for the case when there is air
in between and outside the arrays. Various space harmon-
ics are indicated by different values of n. The fundamen-
tal space harmonic runs continuous, unlike in the case of
circular tape helices where a break occurs because of the
forbidden region. The curve for this case is tangential to
the troughs in the forbidden region, and closely follows
the straight line kyp,/27=sin a(Byp,/27). Also, the
symmetric solution is identical to the antisymmetric one.
This appears to be a consequence of the approximation
for J,. used here. In any case, as seen in the sheath-helix
approximation [2], the difference between the two solu-
tions is small and it decreases as frequency increases. For
a more accurate solution, a general approximation for gy
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Fig. 4. Fundamental space harmonic for the normal-helix case: ¢,,=1,
€,=2.56, a=10°, Dashed curves represent the transverse-antisymmet-
ric solution where it is visibly different from the transverse-symmetric
one.

is as follows:

Jy= 2 2 [Gpsin 2eny/p,)

m=m n=n'
+ H,, cos 27ny /p,) |e™/P=* on the strips

(13)
Fig. 4 gives the dispersion curves for the case when
region 2 is filled with polystyrene (¢,=2.56). This is the
“normal-helix” case. For the sake of clarity only B, is
plotted. Wherever the antisymmetric solution is visibly
different from the symmetric one, it is shown by dashed
lines; elsewhere the numerical difference is negligible.
Only the lobes centered around Byp,/27=n (n=
1,2,3,-- ) are different in the two cases. Even this dif-
ference gradually decreases as n increases. The top por-
tions of various parts of the fundamental tend to follow a
common “envelope”. This fictitious envelope is lower than
the fundamental in the air case. This is expected due to
the presence of the dielectric. While in the air case there
do not appear any branches deviating from the envelope,
here it is seen that as the dielectric constant of region 2 is
gradually increased, the various branches of the funda-
mental deviate more and more from the envelope.
Complementary to the normal-helix case, in the “in-
verted-helix” case region 1 consists of dielectric which
again is taken to be polystyrene. Dispersion curves for
both the symmetric and the antisymmetric cases are given
in Fig. 3. As before, the dashed curves represent the
antisymmetric solution where it is different from the sym-
metric solution. In this case also the difference between
the two solutions decreases as By p,/27 increases. It
should be noticed that the valleys in the forbidden-region

=0 elsewhere.
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boundary are lower in this case compared to the normal
helix. Also, the deviation from the abovementioned ficti-
tious common envelope is in the direction opposite to that
in the normal helix. These two effects combine to cause
the fundamental dispersion curve to merge with the for-
bidden-region boundary for large B0 p,/27.

Both the normal- as well as the inverted-helix cases
admit the possibility of backward wave propagation. The
appearance of closed lobes in the w—f diagrams implies
that w becomes a double-valued function of 8. Peculiari-
ties like this are known to occur in doubly periodic
structures [10].

VIII. CoNCLUSION

An attempt has been made to study the dispersion
characteristics of a planar helix, taking into account the
effects of periodicity and a finite conductor width. These
characteristics are found to exhibit the familiar space
harmonics and forbidden region in the k-8 diagram. The
dispersion characteristics for the air case resemble the
corresponding characteristics for a circular tape helix.
This suggests that the planar helix in this form can have
applications similar to those of its circular counterpart.

A similar comparison has not been possible in the
dielectric case. Nonetheless, as mentioned in [5], possible
application of this planar slow-wave structure, which 1s
expected to involve an easier fabrication, can be in nonre-
ciprocal ferrite components. This possibility is pursued
further in some detail in [11] where a sheath helix on a
pair of magnetized ferrite slabs is considered.
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