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Guided Waves on a Planar Helix

SHEEL ADITYA, STUDENT MEMBER, IEEE, AND RAJENDRA K. ARORA, SENIOR MEMBER, IEEE

Abstroct-Considered here is a planar structure comprising a pair of

parallel arrays of periodically spaced conducting strips which conduct in

different directions in the two arrays. The guiding properties of this planar

structure are found to be similar, in one case, to those of cfrcuiar tape

hefi~. Widle in generai, different dielectric media are assumed in the

sandwiched and outer regiom% the special cases studied are 1) the case in

which afr constitutes both the medi~ 2) the normal-helix case in which the

inner medium is a solid dielectric and the outer medium is air, and 3) the
6Cin~e#.hefff> case with the two media interchanged.

I. INTRODUCTION

T HE conducting helix of circular cross section has

certain unique properties, such as large bandwidth

and low dispersion, which have led to its widespread use

(see, for example, [l]). A somewhat related slow-wave

structure in planar geometry was considered in [2] and [3].

It consisted of a pair of parallel unidirectionally conduct-

ing screens, each conducting in a different direction. In

[3], the structure was confined in the transverse direction

by metal planes; this made exact analysis difficult and

recourse had to be taken to a variational approach. While

the excitation characteristics of the infinitely wide struc-

ture were studied in [4], the dispersion curves for a gener-

alization of this structure were reported in [5]. In the

following this structure is referred to as a “planar helix”.

As in the case of initial studies on the circular helix, so

far the planar helix has been studied in the sheath-helix

approximation. Although this approximation revealed the

potential of the planar helix as a planar slow-wave struc-

ture, the details of the dispersion curves were obscured

because of the limitations resulting from the omission of

the periodic character of the structure as well as the finite

conductor width. Since these aspects can have an im-

portant bearing on the behavior of the structure, it is

desirable that the effect of these be incorporated in the

analysis. To this end, an approach similar to the “tape-
helix” model [6], [7] is used here; space harmonics, the

forbidden region, as well as other details, appear quite

naturally as a consequence of this model, It may be noted

that a related coaxial structure consisting of crosswound

helical wires surrounding a central conductor has been

studied by Wait [8].
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II. CONFIGURATION

The structure considered here for analysis consists of a

pair of arrays of parallel, straight, and perfectly conduct-

ing strips. The strips are assumed to be infinitesimal in

thickness. Along the x direction, the arrays are separated

by a distance 2a (Fig. 1). For simplicity, the structure is

taken to be infinitely wide in they direction. However, it

seems reasonable to expect that the results obtained here

will be applicable to a structure many wavelengths wide.

Strips in the top array are oriented at an angle a, while

those in the bottom array are oriented at an angle – a,

with respect to the y axis. The directions parallel to the

strips in the top and bottom arrays are called y’ and y”,

respectively. With the choice of the axes as shown, the

center lines of the strips intersect the axes at y = mpY and
z = npz, where m and n are integers, and pY and p= are the

periodic spacings between the strips measured along y and

z directions, respectively; pY and p= are related as p=/pY =

tan a. Similarly, the stripwldth w is related to WYand w= as
WY= ~/sin ~ and w== W/COS a. In general, the perrnittivi-

tles of medium 1 and 2 are considered to be different.

III. SYMMETRY PROPERTIES

The planar helix remains unchanged under any one or

any combination of the following transformations:

(X,y,z)+(- x, -y,z) (la)

(X,y,z)+(x,y tpy/2,z +p=/2). (lb)

The transformation (la) rotates the structure about the z

axis by 180°. When this is considered together with

Maxwell’s equations, one finds that the solution of the

problem must be either even or odd if x and y are taken

in conjunction [9]. Thus the structure admits of two inde-

pendent solutions: transverse symmetric and transverse

antisymmetric. For the two solutions, the fields have :

EX
* (X,y,z)= * “~ (–W –Y,z)

x x

E E
: (X,y,z)= t ; (-x, -y,z)

Y Y

: (X,y,z)= T : (–x, –y,z).

z z

(2)

In (2) upper signs apply to the transverse-symmetric solu-

tion.
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py , u/51nd In (3), a~., restricted to be positive and real, are given by

WY= w/51nd

D Array

r

(: Y

L

Y

\ ‘L&jlto~ ~,~”~
PLAN

Fig. 1. Cross section of the planar helix; z is the direction of propaga-
tion.

The invariant transformation (lb) is shared in common

with crosswound twin helices described by Chodorow and

Chu [7]. Therefore, the forms of the exponent used in the

field expressions there should be applicable here also.

Moreover, the symmetry implied by (la) ensures that only

one half of the structure need be considered for a solu-

tion. Finally, the field expressions constituting the solu-

tion should reflect the periodicity of the structure—in

both y and z directions.

IV. FIELD EXPRESSIONS, BOUNDARY CONDITIONS

In the following, the time-dependence factor exp(jut) is

assumed to multiply all the field quantities. The direction

of propagation is taken to be + z. From (1) and (2), field

expressicms appropriate for region 2 for the transverse-

symmetric case are

[ ()EZ1l== ~ ~ C.. sinh (k~.x) cos 2
~..~~..~

( )]

27my
+ C;. cosh (k.nx) sin — ~ –XL.Z (3a)

Py

[ ()
Hz,, == ~ ~ D.. sinh (k..x) cos ~

~..~~.—~

( )]

27rny
+ D~n cosh (k..x) sin — e-J@mnz. (3b)

Py

Similarly for region 1, considering that the fields decay

away from the structure:

a~n=(2mz/py)2 + ( LLJ2-- k? (4a)

k&= (2nn/pY)2+ ( &~)2- k;l (4b]

Pm. = Boo+ (27r’/Pz)(2m + n) (4C:)

k;= ti’po~oc,l , k;l = U2pococ,2. (4d)

In the transverse-antisymmetric case, cosh replaces sinh

and vice versa.

The x and y components of the electric and magnetic

fields in the two regions are obtained by using Maxwell’s

equations. The coefficients A~., A~.,” “ ., etc., involved in

the expressions for these components are related by the

following boundary conditions: the tangential compo-

nents of the electric field are continuous at x = a, and

H,I – HY1l = JZ (5a)

HZ1l – HZ1= JY (5b)

where J= and JY are the components of the surface current

density on the surface x= a. Further, assuming that the

strips are narrow compared to the period, the separation

of the arrays and the wavelength, from physical consider-

ations, it can be assumed that the current flows essentially

longitudinally along the strips, i.e.,

J= J, (6a)

so that

JZ ❑=JY, sin a and JY = JY, cos a. (6b)

Analogous to (3), JY, is expressed in the form

J,=mi_qJ.#fy)

( )]27my
+ J;. sin — e-”~~m”z. (7)

Py

By applying the boundary conditions mentioned earlier,

one evaluates the coefficients zl~H,A~.,. “ “ , etc., in terms

of J~. and J&.

V. CHARACTERISTIC EQUATION

To arrive at the dispersion relation for the structure, the

variational technique introduced in [7] is found suitable

here also. Let Z represent the complex power which might

be generated or absorbed by the top array. Then

(8a)

The field components above are evaluated at x = a. From

(3C)
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(5) and (6)

‘=J::’2J:’’;’[E, sin a + E, cos a)y~ ] @ dz (8b)

in which JY, is obtained from (7). Now, to obtain the

dispersion relation one sets

81(J~. :J~;) =0. (9)

For an approximate solution, one may assume JY, to

consist of a finite number of terms. For similar problems

meaningful results have been obtained by single-term

approximations [6], [7]. Accordingly, the results reported

here are based on the following single-term approxima-

tion:

JY = J exp( – Jl?m ypz/pY)ypz/pY – Wz/2 <Z <YP,/Py + w./2

= O elsewhere. (lo)

In this “zeroth-order” approximation the characteristic

equation reduces to a singly infinite series with m = O. For

instance, for the case when t,l = e,z= 1, the characteristic

equation is

[
~~w -

@Pok:,cOs a (B& +jBO~)

c

(B0n2~n/py Cos LI
+

k!
+sina)(Aon-jA&’’=C). (,1)

VI. FORBIDDEN REGION

Before passing on to results obtained by numerical
solutions of the characteristic equation, it should be of

interest to consider the forbidden region for the planar

helix. Since only those solutions are sought for which the

fields decay away from the arrays, it is implied that none

of the a~. can be imaginary or negative for an acceptable
solution. This restriction results in a forbidden region the

boundary of which, for the present single-term approxi-

mation, is determined as follows:

(~0~)2+ (2mn/pY)2– k:> O . (12a)

which, together with (4c), yields

&OP./2~ ~ - n* [(kopz/2~)2c,1 -(n tan a)’] 1/2.

(12b)

Figs. 2 and 3 include the plots of forbidden regions for
C,l = 1 and 2.56, respectively, and a is taken as 10°. Evi-

dently, the forbidden region changes with a. The troughs

in the boundary are given by

[kOPz/2~jBmPz/27r] = [n tan a/(erl)’/2,n]. (12c)

Solutions for slow-wave propagation must fall below the

boundary of the forbidden region.

VII. NUMERICAL RESULTS

For the numerical solution of the characteristic equa-

tion, values assumed for various parameters are a = 10°,

wz/p= = 0.1 and p=/2~a = 1. The infinite series in the char-

-20 -15 -10 -0.5 0 0.5 10 1.5 2.0

g~o %/ 2 ~

Fig. 2. Forbidden region for erl = 1 and a = 10°. Also shown are the
dispersion characteristics for the air case: C,l = C,z= 1. Different space
harmonics are marked by different values of n.
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Fig. 3. Forbidden region for c,, = 2.56 and a = 10°. Also, dispersion
characteristics for the inverted-helix case: Crl = 2.56, cr2= 1, a = 10°.
Dashed curves represent the transverse-antisymmetric solution where

it is different from the symmetric one.

acteristic equations is found to converge sufficiently fast

to truncate the series after five terms.

Fig. 2 presents the results for the case when there is air

in between and outside the arrays. Various space harmon-

ics are indicated by different values of n. The fundamen-

tal space harmonic runs continuous, unlike in the case of

circular tape helices where a break occurs because of the

forbidden region. The curve for this case is tangential to

the troughs in the forbidden region, and closely follows

the straight line kopz/2n = sin a( /3wp=/2m). Also, the

symmetric solution is identical to the antisymmetric one.

This appears to be a consequence of the approximation
for J,, used here. In any case, as seen in the sheath-helix

approximation [2], the difference between the two solu-

tions is small and it decreases as frequency increases. For

a more accurate solution, a general approximation for JY,
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Fig. 4. Fundamental space harmonic for the normal-helix case: 6,1=1,

~,z= 2.56, a = 10°. Dashed curves represent the transverse-antisyrnmet-
ric solution where it is visibly different from the transverse-symmetric
one.

is as follows:

m” n“

J,= ~ ~ [ Gmn sin (2zvty/pY)
~=~, *=n,

+ Hmn cos (277ny/pY) ] e ‘Jfimnz on the strips

= O elsewhere. (13)

Fig. 4 gives the dispersion curves for the case when

region 2 is filled with polystyrene (C,2= 2.56). This is the

“normal-helix” case. For the sake of clarity only & is

plotted. Wherever the antisymmetric solution is visibly

different from the symmetric one, it is shown by dashed

lines; elsewhere the numerical difference is negligible.

Only the lobes centered around &pz/27r = n (n=

1,2,3,. . ) are different in the two cases. Even this dif-

ference gradually decreases as n increases. The top por-

tions of various parts of the fundamental tend to follow a

common “envelope”. This fictitious envelope is lower than

the fundamental in the air case. This is expected due to

the presence of the dielectric. While in the air case there

do not appear any branches deviating from the envelope,

here it is seen that as the dielectric constant of region 2 is

gradually increased, the various branches of the funda-

mental deviate more and more from the envelope.

Complementary to the normal-helix case, in the “in-

verted-helix” case region 1 consists of dielectric which

again is taken to be polystyrene. Dispersion curves for

both the symmetric and the arttisymmetric cases are given

in Fig. 3. As before, the dashed curves represent the

antisymmetric solution where it is different from the sym-

metric solution. In this case also the difference between
the two soltttions decreases as ~mp, /27r increases. It

should be noticed that the valleys in the forbidden-region
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boundary are lower in this case compared to tlhe normal

helix. Also, the deviation from the abovementioned ficti-

tious common envelope is in the direction opposite to that

in the normal lhelix. These two effects combine to cause

the fundamental dispersion curve to merge with the for-

bidden-region boundary for large fiwpz/27r.

Both the normal- as well as the inverted-helix cases

admit the possibility of backward wave propagation. The

appearance of closed lobes in the a–~ diagrams implies

that Q becomes a double-valued function of ~. Peculiari-

ties like this are known to occur in doubly periodic

structures [10],

VIII. CONCLUSION

An attempt has been made to study the dispersion

characteristics (of a planar helix, taking into account the

effects of periodicity and a finite conductor width. These

characteristics are found to exhibit the familiar space

harmonics and forbidden region in the k–~ diagram, The

dispersion characteristics for the air case resemble the

corresponding characteristics for a circular tape helix.

This suggests that the planar helix in this form can have

applications similar to those of its circular cotrnterpart.

A similar comparison has not been possible in the

dielectric case. Nonetheless, as mentioned in [5], possible

application of this planar slow-wave structure, which is

expected to involve an easier fabrication, can be in nonre-

ciprocal ferrite components. This possibility is pursued

further in some detail in [11] where a sheath helix on a

pair of magnetized ferrite slabs is considered.
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